
Vision-Based Proprioceptive Sensing for Soft Robotic Fingers

Richard Li∗

MIT
rli14@mit.edu

Annan Zhang∗

MIT
annanz@mit.edu

Abstract

Handed shearing auxetics (HSAs) are novel soft actu-
ators that promise compact, fast, and energy-efficient soft
robotic manipulators. While the hardware exists for HSA-
based soft robotic grippers, we need state information if we
hope to write controllers using these grippers for manipu-
lating objects. Unlike a rigid robotic finger, where a simple
model of rigid body links allows us to accurately describe
the internal state of a finger, and via forward kinematics,
the tip position, it is difficult to model the internal state and
tip position of a soft robot finger. In this project, we instead
opt to install cameras inside the tip of the finger, pointing
towards the base. This camera provides a relatively com-
plete visual view of the internal configuration of the finger,
and bypasses the need to define an analytical internal state.
Using these internal fingertip camera readings, we estimate
the tip position relative to the finger base. We propose and
evaluate several methods for fingertip position estimation of
an HSA finger in terms of their accuracy and computational
speed.

1. Introduction
Soft robotics is a relatively new branch of robotics that

deals with mechanically compliant robots that deform in re-
sponse to forces [9]. The compliance in soft robotic systems
comes from the use of soft materials for the robot body, as
well as compliant actuators. In comparison to rigid sys-
tems, compliance gives us safety and robustness [8]. When
using a rigid robotic arm to grasp a fragile item, or hav-
ing non-compliant system that interacts regularly with hu-
mans, the slightest inaccuracies in sensor signals or actu-
ation commands may lead to the item breaking or harm
caused to humans. In other scenarios, due to absence of
compliance, the robot itself may be damaged. Soft robots
have the ability to adapt to constantly changing environ-
ments, which makes them viable for search and rescue ap-
plications. Recently developed snake-like soft robots can
crawl and navigate through various terrains by locomotion
through growth [4]. Furthermore, soft robots demonstrate

Figure 1. HSAs are polymer tubes with a unique pattern that makes
them extend when twisted at the end [6].

extraordinary performance on complicated tasks involving
uncertainty, like picking up objects of unknown sizes and
shapes. Soft vacuum grippers can cling to the surfaces of
the grasped objects by pumping out the air in the gripper,
without specifying the exact displacement or forces of the
gripper [5].

Recently, a novel type of electrically-driven soft ac-
tuators called handed shearing auxetics (HSAs) have
emerged [6]. HSAs are tubes made out of polymers with
a unique pattern on their walls, which couples a twisting
motion on their ends with an extension in the axial direc-
tion 1. Adding additional material along a diagonal in the
cylinder wall constraints the HSA on one side and causes
it to bend. To build a soft robotic finger, two constraint
HSAs with mirrored patterns are rigidly joined together at
their tops and their bottoms are rotated in opposite direc-
tions 2. Grippers built using two of those HSA fingers
have outperformed conventional soft grippers in terms of
energy efficiency, speed, strength, compactness, and punc-
ture resistance [1]. Furthermore, HSA grippers are driven
by commercially available servo motors, while soft grippers
constructed with fluid-driven actuators require large pistons
and heavy hardware 3. A robotic platform with 4 degrees
of freedom, which can be used as base for a robotic wrist,
is built by combining four unconstrained HSAs [6] 4.

To use the finger for manipulation, we would like to un-
derstand what the position of the finger tip is with respect
to the finger base. Deriving this relationship between the
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Figure 2. Adding additional material on the pattern (highlighted in
red) constraints the HSA on one side and makes them bend instead
of extend when twisted [3].

Figure 3. Conventional soft pneumatic grippers driven by fluidics
require bulky hardware involving pistons and pumps, while soft
HSA grippers only need the power supply for the servo [1].

finger tip and base analytically requires an analytical model
of the internal state of the finger. The mechanical behavior
of the internals of an HSA is inherently difficult to model,
since they posses a high number of degrees of freedom. Fur-
thermore, they exhibit highly nonlinear material behavior
both on the constitutive level in terms of the stress-strain-
response and on the structural level in terms of buckling.
Due to the viscoelasticity of the polymers, HSAs mechan-
ically respond to time-dependent effects, like strain rate,
hysteresis, stress relaxation, and creep [11]. Thus, we cur-
rently do not have good analytical models for the internal
state of an HSA.

Figure 4. The four degrees-of-freedom robotic platform is made
out of four unconstrained HSAs and can be used as base for a
robotic wrist [6].

Additionally, it is difficult to add internal sensors
throughout HSAs. The difficulty sensorizing HSAs lies in
the fact that all of cylindrical wall moves. Existing efforts
include fixating a strain gauge on the outer radius of the
bending [2], as well as laminating a conductive material
onto the outer wall of the HSA. The former method me-
chanically interferes with the actuation of the HSA and only
delivers one dimensional strain data. The latter method, in
essence a piezoelectric sensor, fails because of variability
in adhesion and significant drift. In this work, we propose
using a camera that looks at the inside of an HSA as sensor.
We leverage the high dimensional camera data to get rich
sensor readings, which gives us the flexibility to learn mod-
els that predict different information about the HSA state.
Furthermore, having a sensor that does not mechanically in-
terfere with the HSA enables virtual data collection by sim-
ulating HSAs using finite element methods (FEM). This is
not possible for interfering sensors, since modeling contact
with the HSAs makes the FEM simulation infeasible.

In this project we are concerned with the estimation of
the tip position of an aforementioned soft robotic finger, a
pair of HSA cylinders joined together at their tips. Know-
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ing the current tip position of the finger will allow us to
write controllers for accomplishing downstream tasks, such
as grasping objects. Conventional robot fingers are com-
posed of rigid links with sensors providing joint readings
at each link. The tip position of a robotic finger relative to
the finger base can be calculated by the matrix product of
a sequence of transformation matrices. This calculation is
known as forward kinematics.

In contrast, soft robotic fingers do not have a simple
internal model relating the finger base pose and finger tip
pose. Thus, forward kinematics is not applicable. Instead,
we aim to do visual pose estimation for our soft robot fin-
ger by mapping the high-dimensional images of the inter-
nals of the finger to the tip position using neural networks.
These images are taken with Raspberry Pi cameras that are
mounted into the top of the HSAs, while the ground truth tip
position is recorded by an external motion capture system.

2. Related Work

In related work, Werner 2020 [12] developed a cam-
era sensor to estimate the tip position of a pneumatically-
driven soft bellow actuator. For their inference pipeline to
run in real time, they preprocessed the images with non-
learned algorithms and hand-designed six 3×3 features for
a SVM that performs kernel regression. Similarly, She 2020
[10] developed exoskeleton-covered soft fingers with built-
in cameras, which capture high-resolution images for es-
timating the finger tip position. They employed a simple,
large CNN, and demonstrated its capability to predict the
bending angles between the piece-wise straight sections of
the exoskeleton-covered fingers.

Like Werner 2020, we desire a light-weight state esti-
mation system that can run in real-time. However, our
HSAs are more complicated than the actuators considered
by Werner, which may necessitate the usage of more power-
ful function approximators like neural networks. Compared
to She 2020, we aim to design a much faster system which
can be applied on mobile robots. Additionally, our HSA soft
actuators are not the same as the fingers used in She’s work.
Because we have holes in our actuators, there is more ambi-
ent light affecting our camera images, which may make our
task harder.

3. Approach

Our method consists of two main components: designing
the hardware system to collect data and implementing the
models and algorithms for mapping the image of the inside
of the finger to the fingertip position.

Figure 5. Our setup involves an HSA finger that has LED boards
and cameras in the tip. The HSA tubes are connected to rotating
adapters, which are driven by counter-rotating gears connected to
one servo motor. The coordinate frame of reference is defined to
be the center of the base platform.

3.1. Hardware

3.1.1 Actuators

Our actuator consists of two 3D-printed HSA cylinders
made out of polyurethanes, which have a length of 101.6
mm and an outer diameter of 25.6 mm. Each of the HSAs is
printed with an additional constraint in its structure, which
causes it to bend, instead of extend, when twisted. The bot-
toms of the HSAs are mounted onto counter-rotating sock-
ets, which are both actuated by the same ROBOTIS Dy-
namixel MX-28 servo motor. At the top, the HSAs are
rigidly joined together so the cylinders provide a reaction
torque for each other when the sockets are rotated 5.

3.1.2 Camera Setup

A customary fixed-focus Raspberry Pi camera (Arducam
IMX219) is attached to the top of each HSA (e.g. at the fin-
gertip), recording its interior with a resolution of 480×360
pixels at 30 frames per second. The cameras are connected
to an NVIDIA Jetson Nano board, on which the final neural
network will be deployed after the finger is installed onto a
mobile robot.

Early prototypes have shown that the HSAs are very per-
meable to light, making image data recorded at different
ambient lighting conditions incomparable. To alleviate this
issue, we designed a printed circuit board with six white
surface-mount LEDs 6. These LED boards are connected
to an external power source and illuminate the inside of an
HSA from the tip, providing a robuster light environment
for recording reproducible images 7.
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Figure 6. View inside the HSA, where our custom-made LED
board, mounted at the tip, provides internal lighting for the cam-
eras.

Figure 7. Top: An image recorded by the cameras when the LED
lights are turned off is noisy and varies highly with ambient light-
ing. Bottom: With the LEDs turned on, this is a typical image in
our data set of images with non-marked bases.

3.1.3 Motion Capture System and Data Diversity Con-
siderations

Our goal is to learn a tip position estimation system that is
highly accurate, such that we can write fine-grained con-
trollers for manipulating objects. In order for our ma-
chine learning system to be accurate, we need very accu-
rate ground truth labels of the tip position and orientation.
Motion capture (mocap) systems are one way of collecting
high accuracy state readings. In our work, we obtain the
ground truth state readings from a motion capture system

using six OptiTrack Flex 13 cameras connected to an exter-
nal PC. We attach special bead markers to the fingertip so
the mocap system can detect our fingertip. The tip position
of the HSA finger is recorded with submillimeter acccuracy
at 60 Hz.

One major consideration of our data collection process
is data variation. The typical demands of a pose estima-
tion include accurate estimation in the face of sensor noise,
variations in background texture, and occlusions from other
objects. Because our camera is looking from the top of the
fingertip down into the internals of the finger, many of is-
sues that make external pose estimation difficult are allevi-
ated. However, there are still variations in the internal en-
vironment of the finger that we attempt to model with our
data collection process. While most of the outside world
is occluded by the finger casing, there are still holes in
the mesh-like HSA material. These holes allow significant
amounts of ambient lighting to potentially enter. Therefore,
we take care to provide different ambient lighting condi-
tions by recording our trajectories at different times of day
and by varying the lights that are turned on or off in the
room we use for collecting data.

Our final goal of pose estimation is to provide the neces-
sary input to a controller is tasked with picking up objects.
As such, the trajectory of the finger should not be constant
from recording to recording. We thus generate varied tra-
jectories of the finger during mocap data collection.

We would hope to design a vision system that can be
used from finger to finger without being retrained. There-
fore, we collect trajectories with different builds of the fin-
ger and with slightly different materials.

Finally, the HSA materials are currently not extremely
durable. Over the course of dozens of interactions, the ma-
terial may considerably degrade. This degradation is likely
to be a significant factor influencing the distribution of im-
age readings. We account for this by using the same finger
for many takes at a time, thus naturally collecting trajecto-
ries over varied levels of mechanical wear.

3.1.4 Physical Base Marking

Prior work found that painted patterns of dots assisted in
pose estimation [12]. The basic idea is an easily distin-
guishable physical feature allows a computer vision system
to more easily localize itself. In our system, we cut out
a small white circular cardboard piece, and taped it to the
base of the finger. This marking manifested itself as a bright
white circle in the fingertip camera images. We created two
equally sized datasets to test the effect of pose estimation
with and without this physical base marking.
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3.2. Software

3.2.1 MoCap Data Processing

We perform a series of data processing steps on the finger-
tip camera images and mocap data. The fingertip camera
collects images of the inside of the finger / HSA cylinders,
while the mocap system collects state readings of the fin-
gertip position and orientation. The images are considered
the input, and the mocap state readings are considered the
output; together, (image, state) tuples form the samples for
our machine learning system. Our goal is to synchronize
these two data sources in time, to form the samples of our
machine learning dataset. Since the images and mocap data
are collected on different computer platforms (Jetson board
and external PC, respectively), we use a large light pertur-
bation to synchronize the data in time. At the beginning
of every data recording session, we turn on a very bright
flood light, that shines into the HSA finger. We detect when
this flash happens in the stream of fingertip camera images
by searching for the largest intensity drop between frames,
and in the mocap data stream by looking at when the mocap
system stopped receiving signals from the flood light.

To fill in single missing data points in the mocap tip po-
sition and orientation, we linearly interpolate the tip from
existing time steps. We perform a coordinate frame trans-
formation to obtain the tip position in a coordinate frame
fixed to the HSA finger base, which makes the data inde-
pendent of position and orientation of the whole HSA setup
inside the mocap booth. Furthermore, we smoothen the mo-
cap data with a 1D Gaussian filter with kernel size 3 to re-
duce noise and subsample at a factor of 2. The final out-
put of our mocap data collection process is a collection of
MP4 videos, formed from the sequence of fingertip camera
images, and a corresponding collection of CSVs (one per
video), where each row of the CSV contains the tip position
and tip orientation at every timestep in the video.

3.2.2 Machine Learning Setup

Besides our hardware setup, we want to design a machine
learning system that can 1) learn from a relatively small
number of samples, 2) achieve high accuracy on a test set
of held out trajectories, and 3) have fast inference time for
single samples.

Given the MP4 and CSV files from the mocap data col-
lection step, we must write a dataloader. It is difficult to
write a fast dataloader directly pulling frames from the MP4
videos at each training minibatch. Instead, before training
starts, we uniformly sample frames at 33.3ms intervals (cor-
responding to 30FPS), and serialize these frames to disk as
individual images. Our dataloader crawls the folder struc-
ture of our data folder and loads the file paths of images
and the corresponding mocap state readings into a pandas

dataframe. Every minibatch, the dataloader loads images
from disk into GPU memory, to be passed to the neural net-
work.

Before images are passed into our neural network, we
apply a few transforms. One important transform is resiz-
ing the 480x720 original images (pulled from the MP4) to
a 224x224 downsized image. This was important for sig-
nificantly reducing the size of the network, and did not re-
sult in significant accuracy decrease. Besides resizing, we
only had two other simple operations. The first, was a Col-
orJitter data augmentation from Pytorch, which augmented
the brightness, contrast, saturation, and hue of the image.
This augmentation was designed to increase generalization
performance given our small training set size. Finally, we
normalized the image along the x, y, and z channels, such
that the resulting distribution of pixels along each channel
were unit Gaussian. To do this, we calculated the mean and
standard deviation of pixel intensities across all pixels of
all images in the training set. All of these transformations
were critically important to the final accuracy and speed of
the model.

Due to our desire for fast inference, we designed a small,
simple architecture, and we called it SimpleCNN. The ba-
sic module in our architecture consists of: 2D convolution
layer, batchnorm, ReLU activation function, and 2D max-
pooling layer. The SimpleCNN architecture consists of this
basic module stacked three times depthwise, with two fi-
nal fully connected (FC) embedding layers, which even-
tually map to a 3D vector representing the XYZ position
output. Symbolically, the architecture can be expressed
as: Conv-BN-ReLU-MaxPool-Conv-BN-ReLU-MaxPool-
Conv-BN-ReLU-MaxPool-FC-FC.

4. Experimental Results
Our first experiment was using only the SimpleCNN ar-

chitecture without any data augmentation or other training
techniques. Our initial setup of the train/val/test datasets
was pooling together the frames from all trajectories, and
randomly partitioning the frames according to a 60/20/20
split. In fact, in this setting even this most basic training
setup worked well. The real challenge was setting up a
train/val/test split based on the trajectories, and not indi-
vidual frames. In other words, we pool the trajectory IDs
into a set, and randomly partition the trajectories accord-
ing a 60/20/20 split. In this setting, the test set contains
unseen trajectories. The initial dataset split only tested our
network’s capability of interpolating amongst frames in tra-
jectories it already saw during training time. In this new
dataset, our network is tested on tis ability to generalize to
unseen trajectories, which means unseen variations in en-
vironmental lighting, tip position, hardware model of the
finger, and levels of finger mechanical wear. The setting of
generalizing over trajectories is much harder.
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Immediately upon changing to this new dataset split over
trajectories, we noticed much higher variance in the vali-
dation error during training. The validation mean squared
error (MSE) would fluctuate from 5mm to 260mm. Even
with early stopping based on the validation error, we were
not able to achieve good results. The X, Y, Z MSE were
4.641, 8.222, and 6.497 respectively. For the X and Y di-
mension, the MSE was greater than the range between the
minimum and maximum values, meaning the network was
not even making predictions within the support region of
the data.

The next change we implemented was normalizing the
input data. We normalized all the pixels along the X, Y,
and Z dimension such that the resulting distribution was
unit Gaussian. Despite already having BatchNorm between
CNN layers, this input normalization made a significant dif-
ference. Our new X, Y, Z MSE were 3.654, 1.104, and
3.511. The fluctuation in the validation error was also
greatly decreased. Using input normalization, the maxi-
mum validation error was 43mm instead of 260mm.

We noticed at this point that the generalization gap would
start increasing as the network overfit to the training data.
The training error would quickly converge close to 0, but
the validation error would start diverging. We introduce
our data augmentation now as a form of regularization to
reduce the generalization gap. We only apply data aug-
mentation over the color intensities and brightness values
of the image, and not any translational or rotational trans-
forms. While these motion transforms may improve classi-
fication performance, they are not appropriate for our pose
regression task, where the absolute position of pixels gives
us important information about the tip position. We apply
this augmentation using the ColorJitter augmentation in Py-
torch, which takes in 4 scalar hyperparameters determining
the amount of brightness, contrast, saturation, and hue jit-
ter. We use the same hyperparameter across all four types
of ColorJitter. We compare performance over two instan-
tiations of this hyperparameter: [0.2, 0.4]. We found that
0.2 performed the best and that 0.4 was too extreme and led
to a decrease in test accuracy. Using ColorJitter with a 0.2
hyperparameter, we ended up with a new X, Y, Z MSE of
3.654, 1.104, and 3.511.

We made one final change to significantly improve our
test set performance. We took all the previous techniques
inclduing normalization and data augmentation, and applied
them to training a new model over the dataset collected with
the physical base marking. The physical base marking is a
white circle that provides an easily localizable feature in the
image. This marking greatly improved performance. Our
new X, Y, Z MSE became 0.064, 0.258, and 2.227.

In summary, we started off with a MSE error on the test
set of 4.641, 8.222, 6.497 and were able to bring these er-
rors down to the sub-millimeter level with new accuracies of

0.064, 0.258, and 2.227, by using a combination of Batch-
Norm, early stopping based on validation error, input nor-
malization, data augmentation of color and brightness, and
using a physical marker for the finger base. The Y and Z
error decreased by a factor of 31.868 and and 2.917, re-
spectively.

Additionally, we performed some small experiments
regarding inference speed. We quantified the difference
in inference speed between the SimpleCNN model and
two other models: SimpleCNN5 and SimpleCNNMini.
SimpleCNN5 contained two more convolutional lay-
ers before the fully-connected layers. It is described
symbolically as such: Conv-BN-ReLU-MaxPool-Conv-
BN-ReLU-MaxPool-Conv-BN-ReLU-MaxPool-Conv-
BN-ReLU-MaxPool-Conv-BN-ReLU-MaxPool-FC-FC.
SimpleCNNMini replaces one of the fully connected layers
(which had many more weights than a convolutional layer)
with two convolutional layers: Conv-BN-ReLU-MaxPool-
Conv-BN-ReLU-MaxPool-Conv-BN-ReLU-MaxPool-
Conv-BN-ReLU-MaxPool-Conv-BN-ReLU-MaxPool-FC.
Compared to these architectures, SimpleCNN demon-
strated a 34 percent and 32 percent decrease in inference
time of a single image. The final speed for the forward pass
for a single image was 0.47ms, which means the network
forward pass should not be the bottleneck in a system
implementing real time control.

5. Conclusion
We show that our pose estimation system is able to ac-

curatly predict the fingertip position, with sub-millimeter
accuracy, for completely unseen trajectories. These trajec-
tories were taken in different environmental conditions, and
require generalization over lighting, finger hardware, and
motion. These results are promising and indicate that we
may be able to design fine-grained controllers for picking up
objects using the detected tip poses. For example, depend-
ing on the shape and scale of an object, we may modulate
how far the fingers open or close, with extremely high accu-
racy. With respect to our current work, there are still some
limitations. Although the forward pass of our network is ex-
tremely fast, there may be other computational bottlenecks
between the image being produced by the camera and the
image going into the neural network. For example, down-
sizing large images may be a relatively slow operation in
practice. Secondly, although, we did our best to provide var-
ied lighting and environmental conditions, our data was still
largely collected in one of the laboratory rooms in the MIT
CSAIL building. It may be difficult for a network trained
on our data to generalize to open world environments or en-
vironments with very bright sunlight.

We desired a very simple state estimation in our current
system, the XYZ position of the fingertip position. There
may be other representations that produce better accuracy,
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or provide more information to a downstream controller.
For example, instead of predicting the fingertip position,
we may predict various keypoints along the finger, or pre-
dict the parameters of a spline. Finally, while we collected
mocap readings of the orientation, we did not have enough
compute or time to run training experiments on the orienta-
tion. Rotation is often the more difficult aspect of pose es-
timation. Difficulties related to discontinuous rotation rep-
resentations and object symmetry may affect HSA fingertip
rotation estimation [13] [7].

Furthermore, because of the difficulty of manually writ-
ing manipulation controllers, an interesting direction may
be simultaneously learning the latent visual representation
and policy, using imitation learning or reinforcement learn-
ing. For example, we could develop a teleoperation system
representing two HSA fingers, and allow a human operator
to teleop the robot to pickup various objects. An end-to-end
pipeline may be able to bypass the need for accurate state
estimation entirely.

Appendix
Fabrication of HSAs

Up until recently, fabricating an HSA involved cutting
out the HSA pattern from off-the-shelf polymer tubes on
a rotary laser machine. Reliance on customary products,
combined with the mechanical requirement to have a mate-
rial with high elongation at break, restricted the material
choice practically to extruded teflon (polytetrafluoroethy-
lene, PTFE) tubes. Inconsistencies in quality from off-the-
shelf material, as well as inaccuracies in the laser cutting
equipment, limited design flexibility. In recent work, 3D
printing HSAs via digital projection lithography enables
more flexible design, a greater range of materials, and a gen-
erally wider adoption of HSAs [11]. State-of-the-art HSAs
are printed out of Flexible Polyurethane 50 (FPU 50), a pro-
prietary polymer resin mixture by Carbon Inc.

Individual Contributions
Richard: I helped with the overall design of the project

during the planning phase as we decided how to frame the
HSA state estimation problem as a project we could tackle
in this class. After Annan setup the physical data collec-
tion process, and collected videos of camera images and
state readings, I was responsible for writing the correspond-
ing ML infrastructure to process and train the images. I
wrote the dataloader, training scripts, models, and ran ex-
periments over various hyperparameters and algorithms to
achieve good performance over the test set of unseen trajec-
tories. I also contributed significantly all written and pre-
sentation portions of the project.

Annan Zhang: I was responsible for the whole hardware
setup (HSA fingers, LED board, camera, base marking, mo-

tion capture system). I was responsible for recording the
camera and motion capture data, as well as synchronizing,
postprocessing, and setting it up for the learning part. I
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