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Abstract—In this report, we aim to accomplish three goals.
First, we provide a tutorial walking through a paper describing
a method for synthesizing Lyapunov stable controllers through
contact [1] with detailed and intuitive derivations. Second, we
will describe the steps we took to reproduce [1] with a new
optimization algorithm in Drake. Finally, we present a derivation
of the Lyapunov conditions for a new nonlinear cartpole system.

Fig. 1: Diagram of cart-pole with soft walls, showing the
contact frames for λ2 and λ1 [1].

I. INTRODUCTION AND MOTIVATION

In this paper we consider a spring model of contact dy-
namics where object penetration is counteracted by a resistive
force whose magnitude is determined by Hooke’s law. For the
contact force between object i and our object of interest O,
the spring force is:

λi = max(0,−kϕi(wO)) (1)

where ϕi(·) is the signed distance in the contact frame of
object i and wO is the witness point on object O. In [1],
the main example is a cart-pole with two soft walls, where
the objects i are the two walls and the object O is the bob
of the pendulum on top of a cart. We are concerned with
controlling the cart-pole to regulate the pendulum to the origin
while accounting for the contact forces applied by the walls
when the bob is in contact.

The main difficulty for Lyapunov controller synthesis in
this setting is the piecewise nature of contact, which generates
exponential contact modes. Specifically, a contact mode can be
defined as a set of binary variables indicating the penetration or
non-penetration status between each pair of contacts (based on
the signed distance function). Each contact mode is associated
with a local “piece” of the piecewise dynamics. For each local

dynamics equation ẋi, the enumeration method would require
an SOS constraint of an example form:

ϕA(wO) < 0∧ϕB(wO) ≥ 0∧ϕC(wO) ≥ 0 =⇒ V̇ (x; ẋi) < 0

The SOS constraints grow exponentially in the number
of contacts, and this quickly becomes computationally in-
tractable.

Instead, [1] replaces the exponential SOS constraints as-
sociated with V̇ with a single SOS constraint that consists
of additive linear complementarity (LCP) constraints in the
antecedent of the S-procedure. An example form of this SOS
constraint would be:

LCP(x, λA, λ̇A) ∧ LCP(x, λB , λ̇B) ∧ LCP(x, λC , λ̇C) =⇒
V̇ (x; ẋ) < 0

Under this formulation, optimization over the contact modes
becomes computationally tractable.

II. LYAPUNOV AND CONTROLLER REPARAMETERIZATION

For more expressivity, [1] parameterizes the Lyapunov func-
tion and controller using the state x and the forces λ. We
define this reparameterized Lyapunov function:

Ṽ (x, λ) = xTPx+ 2xTQλ+ λTRλ

and controller:

u(x, λ) = Kx+ Lλ

The Lyapunov function can also be parameterized only by
x:

V̄ (x) = xTPx+ 2xTQλ(x) + λ(x)TRλ(x)

Ṽ (x, λ) is quadratic in x, λ while V̄ (x) is piecewise
quadratic in x. To prove asymptotic Lyapunov stability over
the state space x, we must prove negative definiteness of
the function V̄ (x). The directional derivative of V̄ (x) is the
following:

V̄ ′(x; ẋ) =

2xTPẋ+ 2ẋTQλ(x) + 2xTQλ̇(x) + 2λ(x)TRλ̇(x) (2)

For a differentiable Lyapunov function V (x), it is straight
forward to compute the time-derivative V̇ (x) using the chain
rule: ∂V

∂x
dx
dt . Unfortunately, we cannot implement the direc-

tional derivative in Eq. 2 in our mathematical program due
to the piecewise nature of λ(x). The solution is to instead
compute the directional derivative of the quadratic function



Ṽ (x, λ) via the chain rule, while treating λ and λ̇ as indeter-
minates:

Ṽ ′(x, λ; ẋ, λ̇) =
∂Ṽ

∂

[
x
λ

] [
ẋ

λ̇

]

Since λ and λi are now indeterminates, we must implicitly
enforce 1) constraints on λ relating it back to x and 2)
constraints on λ̇ to correctly compute the directional derivative
of λ. The former directly corresponds to the LCP constraints,
and the latter is derived from the LCP constraints and specified
using additional slack variables (see Sec. III).

III. INCORPORATING LCP CONSTRAINTS IN LYAPUNOV
OPTIMIZATION

We derived the casework for the constraints in ΓSOL and
Γ′
SOL in [2].

A. LCP constraints on Lyapunov function

A =

(x, λ)

∣∣∣∣∣∣∣
λ ≥ 0

Ex+ Fλ+ w ≥ 0

λi(E
T
i x+ Fiiλi + wi) = 0


Because λ is now an indeterminate instead of a function of x, it
is important to constrain the values of λ to enforce its physical
definition and relationship with x. The LCP conditions in set
A constrain λ according to the spring contact model in Sec.
I. We can verify the physical correctness of these constraints
using casework:

1) No contact: If the signed distance is positive, and since
λ ≥ 0, the contact force is 0.

ET
i x+ wi > 0 ∧ λ ≥ 0 =⇒
λi(C + Fiiλi), C > 0 =⇒

λi = 0

2) In-penetration: If the signed distance is negative, λi > 0,
which implies λi is defined as the solution to ET

i x +
Fiiλi + wi = 0.

Ex
i + wi < 0 ∧ Ex+ Fλ+ w ≥ 0 =⇒

λi > 0 =⇒
ET

i x+ Fiiλi + wi = 0 =⇒

λi = −
1

Fii
(ET

i x− wi)

3) Contact boundary: If signed distance is 0, then λi is 0.

Fiiλ
2
i = 0 =⇒
λi = 0

B. LCP constraints on time-derivative of Lyapunov function

B =



(x, λ, λ̇)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ ξ, µ :

λ ≥ 0

Ex+ Fλ+ w ≥ 0

λi(E
T
i x+ Fiiλi + wi) = 0

λ̇i + µi = 0

µi(E
T
i x+ Fiiλi + wi) = 0

µiξi = 0

λiξi = 0

ET
i ẋ+ Fiiλ̇i + ξi = 0


We can similarly derive the LCP constraints on V̇ , by

applying casework. Note, for each contact we have two slack
variables, µi and ξi.

1) No contact:

ET
i x+ wi > 0 =⇒ λi = 0

=⇒ µi = 0

=⇒ λ̇i = 0

2) In-penetration:

ET
i x+ wi < 0 =⇒ λi > 0

λi > 0 ∧ λiξi = 0 =⇒ ξi = 0

=⇒ ET
i ẋ+ Fiiλ̇i = 0

3) Contact boundary:

ET
i x+ wi = 0 =⇒ λi = 0

=⇒ λ̇iξi = 0

λ̇i =

{
−ET

i ẋ
Fii

ξi = 0

0 else

Thus, the constraints we use in our Lyapunov optimization
problem imply the correct physical dynamics.

Note: We noticed that the contact boundary constraint is
actually too restrictive compared to the physical dynamics.
This constraint as-is forces our controller to handle both modes
of λ̇i at the contact boundary, when only one mode would be
visited by the dynamics induced by the controller.

IV. ALTERNATING OPTIMIZATION PROCEDURE

We first experimented with the PENLAB solver, which is a
free version of the PENBMI solver used in [1]. While we were
able to verify the Lyapunov controller in [1] with PENLAB,
we were unable to solve for a controller with nonlinear
dynamics and contact either from random initializations or
LQR initialization. Thus, we were motivated to implement the
alterations optimization method, to see if it would scale to the
nonlinear case.

The full optimization problem for maximizing the volume
of the region of attraction {(x, λ) | Ṽ (x, λ) ≤ ρ} is as follows:



max ρ

s.t. Ṽ (x, λ)−
2m∑
i=1

σg,i(x, λ)gi(x, λ)

−
m∑
i=1

σh,i(x, λ)hi(x, λ)− γ1∥x∥2 is SOS

σg,i(x, λ) is SOS, i = 1, . . . , 2m

γ2∥x∥2 − Ṽ (x, λ) is SOS

− V̇ (z)− σROA(z)(ρ− Ṽ (x, λ))

−
2m∑
i=1

σĝ,i(z)ĝi(z)

−
m∑
i=1

σĥ,i(z)ĥi(z)−
2m∑
i=1

σd̂,i(z)d̂i(z)

−
3m∑
i=1

σĉ,i(z)ĉi(z)− γ3∥x∥2 is SOS

σROA(z) is SOS
σĝ,i(z) is SOS, i = 1, . . . , 2m.

(3)

This mathematical program includes
1) Indeterminates: z = [x, λ, λ̇, ξ, µ]
2) Decision variables:

• Parameters of the Lyapunov function Ṽ (x, λ): P =
PT , Q, R = RT ;

• Parameters of the controller u(x, λ): K,L;
• Parameter of the Lyapunov ROA (level-set): ρ;
• Coefficients of the S-procedure multipliers:

σg,i(x, λ), σh,i(x, λ), σROA(z), σĝ,i(z), σĥ,i(z),
σd̂,i(z), σĉ,i(z);

Functions g, h, ĝ, ĥ, d̂, ĉ define the constraints for sets A and
B. In particular g and ĝ define linear inequality constraints

g(x, λ) = ĝ(z) =

[
λ

Ex+ Fλ+ w

]
≥ 0, (4)

h and ĥ define the quadratic equality constraints

h(x, λ) = ĥ(z) = [λ⊙ (Ex+ Fλ+ w)] = 0, (5)

d̂ defines the linear equality constraints involving slack vari-
ables

d̂(z) =

[
λ̇+ µ

Ex+ Fλ̇+ ξ

]
= 0, (6)

and finally ĉ defines the quadratic equality constraints involv-
ing slack variables

ĉ(z) =

µ⊙ (Ex+ Fλ+ w)
µ⊙ ξ
λ⊙ ξ

 = 0. (7)

The alternating optimization algorithm we implemented is
described in Alg. 1. We split the decision variables into two
sets, and alternately optimize over each set, while increasing
the region of attraction.

Algorithm 1 Control-design via alternating optimization

Variable partition:
SetV = [P,Q,R, ρ], Setu = [K,L, σROA],
SetS = [σg, σĝ, σh, σĥ, σd̂, σĉ]

Initialization: small ROA for LQR
1: P ← SLQR, Q← 0, R← 0, K ← −KLQR, L← 0
2: Solve (3) for SetS with fixed SetV ∪ Setu

Alternating optimization
3: for number of iterations do
4: Solve (3) for SetV ∪ SetS with fixed Setu
5: for ρguess ∈ line-search(ρ) do
6: Solve (3) for Setu∪SetS with fixed SetV , ρ = ρguess
7: if feasible solution found then
8: break
9: end if

10: end for
11: end for

Note: For the first alternation set SetV ∪ SetS , since both
Ṽ and ρ are decision variables, maximizing ρ does not
correspond to increasing the region of attraction as Ṽ may
be proportionally scaled. We could fix ρ and minimize the
determinant of the matrix of Ṽ , but minimizing the determi-
nant is not convex. Thus, we are forced to use a heuristic for
increasing the RoA - namely, setting bounds on Ṽ .

V. SIMULATION RESULTS ON CART-POLE WITH
SOFT-WALLS

We tested the controller-design algorithm described in Sec-
tion IV on a cart-pole with soft walls systems [2].

We implemented the simulation setup in Drake [3]. The
contact forces were computed by Drake’s contact solver in
the point-contact mode. The visualization of the simulation
environment is shown in Figure 2a.

Figures 2b and 2c show the results of simulation for LQR
controller and our contact-aware controller synthesized via
alternations procedure. The Figures show time-evolution of
the x-coordinate of the pole xpole(t). Both trajectories were
executed from the same initial state

[xcart, θpole, ẋcart, θ̇pole] = [0.03, 0,−2.25, 0.9].

LQR has no knowledge of the walls, which leads to di-
verging trajectory as the dynamics become affected by the
wall contact forces. In contrast the contact-aware controller
successfully utilizes the force feedback to stabilize the system.

Following [2], we perform quantitative comparison of the
controllers. We repeat simulation from N = 50 random initial
states sampled from the following distribution

10 · xcart(0) ∼ U(−1, 1), θpole(0) = 0,

1

4
· ẋcart(0) ∼ U(−1, 1), θ̇pole ∼ U(−1, 1).

We simulated the system for T = 40 seconds. We consider
the performance of the controller successful if it regulated the



system to the origin (up to a certain threshold). The success
rates of LQR and our contact-aware controller are

• LQR: 36%;
• Contact-aware: 100%.

VI. NONLINEAR CART-POLE DYNAMICS AND BASIS

While [1] derived the dynamics for the linearized cart-pole
with contacts, we had to manually derive the dynamics and
SOS basis for the nonlinear cart-pole with contacts, as well as
implement various reparameterizations to make it amenable
for SOS optimization. We used the techniques of implicit
dynamics parameterization and using a trigonometric basis.
While we were able to generate the mathematical formulation,
we could not get the optimization to solve for a controller yet.

(mc+mp)ẍ+mpl cos θθ̈−mplθ̇
2 sin θ−u+λ1−λ2 = 0 (8)

l(mp cos θẍ+mplθ̈−mpg sin θ−cos θλ1+cos θλ2) = 0 (9)

y =


y1 x
y2 c = cos(θ)
y3 s = sin(θ)
y4 ẋ
y5 θ̇
y6 q = (θ̇)2

 ẏ =


ẏ1 ẋ
ẏ2 ċ
ẏ3 ṡ
ẏ4 ẍ
ẏ5 θ̈
ẏ6 q̇

 (10)

Implicit dynamics: ẏ is an indeterminate that implicitly
enforces the dynamics via the S-procedure.

g(y, ẏ, λ) =
ẏ1 − y4
ẏ2 + y3y5
ẏ3 − y2y5

(mc +mp)ẏ4 +mpl(y2ẏ5 − y6y3)− u+ λ1 − λ2

mply2ẏ4 +mplẏ5 −mpgly3 − ly2λ1 + ly2λ2

ẏ6 − 2y5ẏ5

 (11)

Dynamical system with LCP:

g(y, ẏ, λ) = 0 (12)

0 ≤ λ1 ⊥ ℓy3 − y1 +
1

k1
λ1 + d1 ≥ 0 (13)

0 ≤ λ2 ⊥ −ℓy3 + y1 +
1

k2
λ2 − d2 ≥ 0 (14)

E =

[
−1 0 ℓ 0 0 0
1 0 −ℓ 0 0 0

]
(15)

F =

[ 1
k1

0

0 1
k2

]
w =

[
d1
−d2

]
(16)

u(y, λ) = Ky + Lλ (17)

V (y, λ) = yTPy + 2yTQλ+ λTRλ (18)

V̇ (y, ẏ, λ, λ̇) = 2yTP ẏ + 2ẏTQλ+ 2yTQλ̇+ 2λTRλ̇ (19)

V S-procedure

1) y22 + y23 − 1 = 0

2) y25 − y6 = 0

3)λ ≥ 0

4)Ey + Fλ+ w ≥ 0

5)λi(E
T
i y + Fiiλi + wi) = 0


⇒V (y, λ) ≥ 0 (20)

V̇ S-procedure

1) y22 + y23 − 1 = 0

2) y25 − y6 = 0

3)λ ≥ 0

4)Ey + Fλ+ w ≥ 0

5)λi(E
T
i y + Fiiλi + wi) = 0

6) g(y, ẏ, λ) = 0

7) λ̇i + µi = 0

8)µi(E
T
i y + Fiiλi + wi) = 0

9)µiξi = 0

10)λiξi = 0

11)ET
i ẏ + Fiiλ̇i + ξi = 0



⇒ V̇ (y, ẏ, λ, λ̇) ≤ 0 (21)

1) is the cos2(θ) + sin2(θ) = 1 constraint;
2) is the constraint relating θ̇ and θ̇2

3)-5) are the LCP constraints
6) is the implicit dynamics constraint
7)-11) are the constraints on the λ̇, time-derivative of the

contact-forces.

VII. PROJECT JOURNEY

We began this project with the intention of developing
a system for Lyapunov stable grasping and stacking of a
cube. While we made significant progress in understanding the
theoretical underpinnings of a viable technique for handling
contact in Lyapunov controller synthesis, we are still away
from our initial goal.

We extensively derived the math and physics in [1], as doing
so was essential for reproducing and debugging the code in
Drake and for formulating the nonlinear version in Sec. VI.
It also laid the groundwork for this tutorial, which is more
approachable than the original paper.

We scheduled our coding plan as follows:
1) Verify we can find a controller using our alternating

optimization strategy for cart-pole with no walls.
2) Verify cart-pole with walls and contact forces and linear

dynamics.
3) Verify cart-pole with walls and contact forces using

implicit parameterization of linear dynamics.
4) Verify cart-pole with walls and contact forces using

implicit parameterization of nonlinear dynamics.
We were able to accomplish steps 1-3.
Our implementation of the alternating optimization is based

on a wrapper of Drake’s MathematicalProgram which



(a) Cart-pole with walls simulation setup
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(b) Trajectory of the LQR-controlled cart-pole
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Fig. 2: Simulation results on the cart-pole with soft-walls system

• sets up the indeterminates, decision variables, the cost,
and the constraints in (3) with some decision variable
being optionally freezed or initialized from solution ob-
tained on the previous step (depending on the phase of
alternations).

• provides a general interface for setting s-procedure
multipliers and SOS constraints. We re-implemented
part of the Drake’s AddFreePolynomial,
AddSosPolynomial functionality to explicitly
expose the coefficients decision variables, so that these
variables can be freezed or initialized with the previous
step values.

VIII. PRACTICAL CHALLENGES

A surprising amount of hyperparameter tuning was needed
for the SDP solver to converge (with CSDP and even Mosek).
We spent time tuning the bounds on V,K and L. Additionally,
alternations sometimes would run into numerical issues where
the solution to the previous optimization problem would be
infeasible for the next alteration iteration. We addressed this
by using a strategy where we solve for the maximum ρ in line
4 of Alg. 1, then decrease the optimal value found and solve
a second feasibility problem with fixed ρ, which is a heuristic
for staying in the interior of the positive semidefinite cone.
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